
RRAM-Based Non-Von Neumann Computing
Literature Review

Trenton Rochelle
Memory-Centric Computing for Processing Neural Networks

I. INTRODUCTION

Von Nuemann (VM) based computing has improved con-
siderably throughout the years, but certain computations are
limited by their frequent memory accesses which introduce
large latency and energy consumption. Many of these tasks
are within the artificial intelligence domain where parallel
processing can improve the performance significantly, espe-
cially as the trend of larger and deeper networks continue.
This trend demands increased compute power, and thus energy
consumption. One solution to this problem is to merge the
gap between memory and processor through hardware based
vector-matrix multiplication in memory to aid the development
of artificial neural networks (ANN). The most common metrics
to evaluate the performance of these circuits is area, energy
consumption, speed, bit precision, and accuracy (compared to
a software-based equivalent).

Memristors have garnered attention within this domain due
to their resistive switching qualities that are based on the
voltage/current applied to them, which can then be used
to represent a neural network (NN) weight. Scientists have
achieved memristors that can hold a high resistance state and
a low resistance state which can be representative of a single
bit. These memristors can be paired with other basic circuitry
elements such as transistors and capacitors and formed into a
grid to achieve a dynamic memory is called Resistive RAM
(RRAM) where multiply-and-accumulate (MAC) operations
can be performed without the need of a central processor.
This RRAM non-VM computation in memory (NVCIM) has
the potential to achieve high energy and area efficiency but
will only become competitive after significant neural network
performance increase and area reduction compared to CMOS
alternatives.

A. Memristors

This resistive switching hardware is achieved with memris-
tors which Serrano-Gotarredona et al. [1] define as a “two-
terminal electronic device which is similar to a resistor,
but whose resistance changes dynamically as the device is
being used.”1 The most common memristors cited are those
that have two states, high resistance state (HRS) and a low
resistance state (LRS), both of which are constant between
a specified voltage range until resistive switching. This paper
will assume bipolar switching where the LRS can be triggered
by increasing the voltage potential across the device until it
reaches a threshold voltage termed Vset, while the HRS can be

toggled once the voltage reaches a negative threshold termed
Vreset. This can be shown in Fig. 1 below.

Fig. 1: Bipolar switching of single level memristor

B. RRAM

As each of these memristors effectively has two states, they
can be represented as a single bit. Multiple memristors can
then be used in conjunction to increase the number of bits to
achieve a specific weight level. These memristors can then be
arranged into cells along with transistors in a crossbar manner
to create RRAM where individual cells can be interacted
with through wordlines (WL) and bitlines (BL). In general,
the RRAM crossbar structure is composed of one or more
horizontal WLs and one or more vertical BLs. The BLs are
used to “select” a specific column for which the column
multiplication is accumulated, while the WLs are used to
specify the rows and multiply the input pulse with the cell
weight.

Fig. 2: Pulse width based input

Fig. 3: Multi-pulse based input



Fig. 4: Amplitude dependent input pulses

Fig. 5: Parallel input pulses

Input coding follows the same general guideline of a voltage
pulse being applied, but it can vary in its structure. There are
two main patterns, timing-dependent and amplitude dependent.
These can either be fed in on a single line or in parallel
depending on the architecture of the neuron and synapse.
Timing-dependent inputs are either pulse width based, where
the pulse width increases with the input value, or multi-pulse
based, where the number of pulses increases with the input
value. Amplitude dependent pulses increase voltage with the
input value. These variations are shown in Figures 1-4 and
have been adapted from Xi et al. [3].

II. ARCHITECTURES

A. 1T1R Cell

One of the easiest to understand RRAM structures consists
of one transistor and one memristor (1T1R) where the weights
consist of a binary value. An example of the synaptic network
mapping to the 1T1R RRAM structure from Yao et al. [4] is
shown below. This structure maps a grayscale image of a face
into the input using a multi-pulse scheme. Each source line
(SL below) is a current accumulation of each input (V below)
multiplied by its respective synapse/weight (W below) into the
post-layer neuron. The figure also shows how each grayscale
face is converted into a value from 0-255 which determines
the number of input pulses.

Fig. 6: 1T1R RRAM MAC structure [4]

B. Differential Lines

Another problem with memristors is their strictly positive
conductance values. Bankman et al. [5] solve this by using a
differential system where each weight has a negative copy of
it (a multilevel memristor is simulated with where weight ε
[-2,2]). These weight values feed into separate accumulation

lines which are subtracted in the form of Gm −Gp, where
Gm and Gp are the conductance of the differential weights,
and later divided by the normalizing constant 2 ∗Gu where
Gu is the step size. A figure of this is shown below where the
inputs are fed in parallel and each memristor per cell contains
the same weight.

Fig. 7: Weight-activation dot product worldline group [5]

C. 4R Cell

The differential duplicated columns can be removed by in-
troducing a map that converts purely positive conductances to
a range of positive, negative, and zero weight. By introducing
a cell that has 4 (or more) parallel memristors, we achieve
a conductance that is determined by the amount of “on” and
“off” memristors.

Fig. 8: Weight-conductance mapping of parallel memristors

The total resistance of each cell can be calculated as the
parallel resistance of the four memristors with n memristors
being turned on:

Rcell = 1/(n/LRS + (4 − n)/HRS)

Where LRS and HRS are the resistance values of the low
and high resistance states, respectively. Because the HRS is
orders of magnitude larger than the LRS and contributes neg-
ligibly to the overall resistance, the resistance and conductance
of the cell can be simplified to the following:

Rcell = Infinite, n = 0



Rcell = LRS/n, n > 0

Gcell = n/LRS

The cells are placed in a crossbar structure where the input
along the wordline is an amplitude-based single pulse. The
mapping of X to the input follows the following:

Xε[0 −Xmax]

memristor operating positive voltage range ε[0, 1.5V ]

Xnormalized ε[0 − 1] = X[:]/Xmax

appliedwordline voltage ε[0, 1.5V ] = V = 1.5∗Xnormalized

With the bitlines grounded, the following currents can be
calculated:

Icell = V ∗Gcell = V ∗ (w + 2)/LRS

Ibitline =

n∑
i=1

Icell,i

Due to the shifting of negative weights to purely posi-
tive conductance values, differing input and weights values
that lead to the same outputs will accumulate different cur-
rent that must be adjusted. As shown below, BL0,BL1,BL2
are 120,170,160 uA respectively, while BL3,BL4,BL5 are
140,190,180 uA respectively.

Fig. 9: Equivalent outputs with differing accumulations

While the bitlines between the two examples do not match
up, the differences between the bitlines in their respective
examples are the same. The current on each bitline is a result
of the applied voltages so a constant reference current cannot
be subtracted, but the reference current can be calculated
and then subtracted from each bitline. This reference current

is equal to the current accumulated for an output of 0 and
can be forced by multiplying any input by the zero weight.
This reference current can either be calculated outside of
the crossbar MAC or inside with an extra column of preset
memristor values. The adjusted bitlines for the two examples
in turn switch to 0uA,50uA,40uA which calculate to a current
step of 10uA per output value step.

Icell, w = 2 = V ∗Gcell, w = 2 = V ∗ 2/LRS

Ireference =

n∑
i=1

(2 ∗ Vi/LRS)

Ibitline,adjusted = Ibitline−reference

Fig. 10: Reference bitline to be subtracted

Because current subtraction is complicated, an easier
method is to convert the currents into voltages and then
subtract the reference voltage. To convert the current into
voltages, a current sense amplifier is used with a preset or
adjustable gain to amplify the voltage drop across a very small
(to prevent a current calculation error) shunt resistor. Once we
have the reference voltage, it can then be subtracted through
the use of an operational amplifier with a gain of 1.

Like the previously mentioned reference current, the refer-
ence voltage can be calculated in analog within the crossbar
structure or digitally outside the crossbar and then converted
into analog through a DAC. These can two be seen at the
“Current To Voltage” label in Figure 11 below, with inside
(left) and outside (right) crossbar implementations. If the
reference voltage is performed outside the crossbar structure
and ahead of time of the MAC operation within memory, the
DAC could be able to feed into the current-sense amplifier as
a voltage bias, thus subtracting the voltage and skipping the
second stage of operational amplifiers, but this circuit is neither
realized nor shown in this paper and merely is a suggestion
to possibly improve power and latency. The calculations for
current to voltage and subsequent subtraction are as follows:

V (Ireference) = Ireference) ∗Rshunt

Vreference = V (Ireference) ∗Gain

Vbitline = V (Ibitline) ∗Gain



Vbitline,adjusted = Vbitline − Vreference

Vbitline,adjusted = V (Ibitline,adjusted) ∗Gain

Fig. 11: Amp-to-Volt conversion and reference subtraction

The adjusted bitline voltages can then be fed into an ADC
layer that encompasses both the bit-digitization and voltage
comparator function that scales with a precomputed constant.
We can directly calculate Y = X * W by combining the
previous equations:

Vbitline,adjusted = V (
∑
i

(Vi ∗ (wi + 2)/LRS)

−
∑
i

(2 ∗ Vi/LRS)) ∗Gain

Vbitline,adjusted = V (
∑
i

(Vi ∗ wi/LRS)) ∗Gain

Vi = 1.5 ∗Xi/Xmax

Vbitline,adjusted = V (i(Xi ∗ wi/LRS)) ∗Gain ∗ 1.5/Xmax

Vbitline,adjusted = Y ∗ ((1.5 ∗Gain)/(Xmax ∗ LRS))

Y = Vbitline,adjusted ∗ constant

D. 4R1T Cell

While the previous cell allows for computationally valid
MAC operations, all memristor values are pre-set and con-
stantly connected to the bit lines. With all memory cells having
an effect on the bitlines, the full 2D array of the RRAM-
CIM should be used to avoid sneak currents or charging
unused, possibly floating wordlines that could contribute to
RC delay. A starting idea was to introduce a connecting
transistor between the four parallel memristors and the bitline
to allow for dynamic disconnecting of cells. This idea was
explored through simulations of bitline current, but ultimately
the accumulated current cannot be converted to the correct Y
output due to the interfering nature of the relatively large value
of the transistor on resistance, Ron.

Through simulations of the previous weights and inputs of
the 3x3 RRAM grid, once Ron reaches 10% of the LRS, each
step in Y completely breaks down and Y cannot be recovered.
This is devastating for this structure as Ron is generally in the
range of many kΩ for 130nm.

Rcell = Infinite, n = 0

Rcell = Ron+ LRS/n, n > 0

Gcell = 1/(Ron+ LRS/n), n > 0

Icell = V ∗Gcell = V/(Ron + LRS/(w + 2))

Ibitline =

n∑
i=0

Icell,i

Fig. 12: 4R1T Cell with a select transistor

E. 4R4T Cell

To adjust for a resistance that is proportional with the
number of memristors turned on, one transistor is attached
to each memristor as shown in Figure 13.

Fig. 13: 4R4T Cell with 4 independent select transistors

The select line(s) run vertically connecting all cells within
a column, where the red circle attached to the line and gate
on the transistor indicate a connection. This select process can
be performed with a single line where all transistors within a
column are connected and turned on simultaneously, or with
four lines where the ith transistor of each cell is connected
together. While the four line select introduces a larger area, it
allows the ability for selective connection of the ith memristor
and can facilitate the ability to dynamically change the value
of the memristor, compared to the 4R cell which requires a
preset array. The four line select allows for differing voltage
drops across each parallel memristor within the cell compared
to the single line select where the voltage drop across the
parallel memristors is identical, which prohibits achieving
weights -1,0, and +1, as all of the parallel memristors can



only simultaneously set or reset at a given time, only allowing
the weights -2 and +2.

An algorithm for manipulating the four line select, as well as
the wordline and bitline, to achieve a dynamic training of the
parallel memristors is not achieved yet as this is a somewhat
novel approach and is outside the scope of this paper, but a
column would most likely require 4 steps to update the weights
as the ith memristor in each cell would need to be isolated
from the other 3.

While the training problem is potentially solved with this
structure given the correct algorithm mentioned above, only
specific columns can be disconnected from the RRAM. This
can be achieved by simply not charging the select lines of
specific columns. To disconnect whole wordlines within the
RRAM as well, a 4R8T structure would be necessary, as shown
below. The drawback to the 4R8T cell is the increase in size,
enable line and transistor charging, as well as the fact that if
the worldline enable of row i is disabled, all i+1 rows will
also be disables as the select line will become floating, thus
turning off all of the transistors.

Fig. 14: Wordline enabled 4R8T cell and 4 select transistors

To validate the correctness of the 4R4T cell during the
MAC operation, we will follow the same math as before.
The assumed operation of the selection lines are that they are
charged to a voltage well above the threshold value such that
variances between the transistor on-resistances are negligible.
The only metric that changes is cell current which is shown
below.

Icell = V ∗Gcell = V ∗ (w + 2)/(LRS +Ron)

Once this cell current is accounted for, the same math can
be followed from the 4R cell, and this leads to a slight change
in the constant scalar that is multiplied by Y.

Vbitline,adjusted = V (
∑
i

(Xi ∗ wi/(LRS +Ron)))

∗Gain ∗ 1.5/Xmax

Vbitline,adjusted = Y ∗ ((1.5∗Gain)/(Xmax ∗ (LRS+Ron)))

Y = Vbitline,adjusted ∗ constant

Because an hspice simulation was not able to be achieved
in time, a comprehensive analysis of power was not performed
for this paper, but a calculation of peak power draw flowing
through the cells to ground can be estimated. With the previous
assumption that the operating voltage range of the memristors
is 0V-1.5V, testing two different LRS resistances of 10kΩ and
100kΩ for each memristor, and a transistor on resistance of
10kΩ, the worst case scenario for an RRAM of 1024x1024
rows & columns is each memristor weight having a value of
2, and the applied voltage to each row is 1.5V.

Rcell = Ron + LRS/4 = 12.5kΩand35kΩ

P = V 2/R

P = (1.52 ∗ 1024 ∗ 1024)/Rcell = 188.74W & 67.4W

While the peak power consumption is 188.74W and 67.4W
for a LRS of 10kΩ and 100kΩ respectively, this current
draw time through the RRAM is incredibly short as the
input is provided as a pulse that is as short as possible and
also provides a stable ADC read. Based on the large power
consumed during the MAC operation, a timing analysis should
be completed to minimize input pulse length.. Outside of active
computation, the RRAM array should consume no power as
the memristors are nonvolatile and no CMOS is needed within
the cells. Additionally, this worst case scenario is likely to
never occur as the weights and inputs will vary significantly.
A potential look for an “average” MAC is half of the max
input voltage, .75V, and the zero-weight memristor, LRS/2.

Rcell = Ron + LRS/2 = 15kΩ & 60kΩ

P = (1.52 ∗ 1024 ∗ 1024)/Rcell = 157.28W & 39.3W

It appears that a larger LRS for the 4R4T structure leads
to lower power draw during the MAC operation, but it should
be noted that the current of each bitline runs through a shunt
resistor which becomes amplified through the current sense
amplifier. As the voltage drop across Rshuntdecreases with
low bitline current accumulation, the more sensitive the current
sense amplifier becomes to noise. Rshunt should be calibrated
to be as large as possible to increase this drop, but Rshunt must
stay as small as possible to not affect the accumulation of the
bitline current. Another option to reduce power consumption
that maintains the same considerations as before is to reduce
the input voltage which could have a more significant effect
as power scales exponentially with voltage.



F. Layout Limitations

Layout limitations exist due to the current design of a
crossbar architecture. The space between the crossbars in
the RRAM domain are conventionally filled with memristors
and potentially a diode thin film that prevents current “sneak
paths”. With the 4R4T/4R8T design, this area would need
to be sufficiently large enough, as well as the manufacturing
capability, to place each memristor in series with a transistor.
Additionally, current accumulation lines need to be evaluated
for their impact on current as thin bitlines could contribute
significant resistance.

G. Conclusion

Implementing a programmable, trainable, low-energy, high
speed, high density RRAM includes many research challenges
that span many domains such as material science, layout
design, architecture, and algorithms. This paper shows how
RRAM can store positive and negative weights without a
differential weight storage, and that scale linearly with the
number of memristors by using the 4R cell, with the ability to
enable/disable entire bitlines (4R4T) and wordslines (4R8T),
and the potential to isolate individual weights in a cell (4R8T),
at the expense of increased size. Much of the workarounds
present in this paper could be ameliorated with a true multi-
level memristor, but none were found at the time of writing.

REFERENCES

[1] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and
B. Linares-Barranco, “STDP and STDP variations with memristors for
spiking neuromorphic learning systems,” Front. Neurosci 7, 2 (2013).

[2] C. Sung, H. Hwang, and I. K. Yoo, ”Perspective: A Review on Mem-
ristive Hardware for Neuromorphic Computation,” J. Applied Physics,
Vol. 124, No. 15, 2018, p. 151903.

[3] Xi, Yue, et al. “In-Memory Learning with Analog Resistive Switching
Memory: A Review and Perspective.” Proceedings of the IEEE, vol.
109, no. 1, 2021, pp. 14–42.

[4] P. Yao et al., “Face classification using electronic synapses,” Nature
Commun., vol. 8, no. 1, p. 15199, Aug. 2017.

[5] Bankman, D., et al. “RRAM-Based In-Memory Computing for Embed-
ded Deep Neural Networks.” 2019 53rd Asilomar Conference on Signals,
Systems, and Computers, 2019.

[6] Ganesh, Pooja & Krishna, s and V, Ravi. (2019). Multi-level memristor
memory: Design and performance analysis. International Journal of
Innovative Technology and Exploring Engineering. 8. 723-729.

[7] Lee, Jaeheum Eshraghian, Jason Cho, Kyoung-Rok Eshraghian,
Kamran. (2019). Adaptive Precision CNN Accelerator Using Radix-X
Parallel Connected Memristor Crossbars.


